The Preparation and Crystal Structure of a BaRhO_{3} Polytype

B. L. CHAMBERLAND and J. B. ANDERSON
Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06268

Received December 8, 1980; in final form February 16, 1981

Abstract

Barium rhodium oxide, BaRhO_{3}, was prepared at $1175^{\circ} \mathrm{C}$ and $60-65 \mathrm{kbar}$ by the reaction of BaO_{2} and RhO_{2}. A hexagonal black platelet obtained in the reaction product was found to possess a four-layer stacking sequence in space group $P 6_{3} / m m c$ having hexagonal unit cell parameters $a=5.744(1), c=$ $9.642(1) \AA$. The structure was determined from 707 independent reflections of which 224 were considered observed. Averaging equivalent reflections yielded 132 unique observed reflections. Refinement of the structure by least-squares methods gave a conventional R value of 4.4%. The structure consists of a four-layer stacking sequence of close-packed BaO_{3} layers containing tetravalent rhodium in all the octahedral oxygen interstices. The compound was found to be isostructural with previously reported BaMO_{3} phases. This is the first single-crystal refinement of the $4 H$ polytype using a four-circle diffractometer.

Introduction

The preparation of BaRhO_{3} was attempted by the reaction of BaCO_{3} and $\mathrm{Rh}_{2} \mathrm{O}_{3}$ at ambient pressure under oxidizing conditions. The product obtained appeared to have a $4 H$ structure (high-temperature BaMnO_{3} polytype) based on close-packed BaO_{3} layers. The product was always obtained in the form of a microcrystalline powder and exact structural information could not be obtained. Attempts to isolate single crystals of BaRhO_{3} in flux-growth experiments always yielded a different phase. The ambient-pressure product and the crystal growth phases were observed to react with aqueous HCl to generate chlorine gas. This reaction was believed to proceed by a redox process involving Rh^{4+} and the chloride ion of the acid. The $\mathrm{Ba} / \mathrm{Rh} / \mathrm{O}$ phases appeared to be strongly oxidizing and could be represented by the
general formula BaRhO_{3-x}, where x lies between 0.1 and 0.45 .

In order to obtain a stoichiometric product in the form of the single crystals, an attempt was made utilizing the high-temperature/high-pressure experiment. This method had been used previously to yield other unstable or metastable phases in single-crystal form. The results of these experiments with BaRhO_{3} and the characterization of the product are presented.

Experimentation

Preparation

The synthesis of BaRhO_{3} was performed in a tetrahedral anvil apparatus under the following conditions: $1175^{\circ} \mathrm{C}$ and $60-65$ kbars for 2 hr , then quenched to room temperature prior to the release of the applied pressure. The reaction can be ex-
pressed by the chemical equation:

$$
\mathrm{BaO}_{2}+\mathrm{RhO}_{2} \xrightarrow[\mathrm{t}]{\mathrm{p}} \mathrm{BaRhO}_{3}+\frac{1}{2} \mathrm{O}_{2}
$$

The source of BaO_{2}, reagent grade, was A. D. Mackay, and RhO_{2} was obtained from $\mathrm{K} \& \mathrm{~K}$ (as a black amorphous reagent). Since RhO_{2} decomposes at $850^{\circ} \mathrm{C}$, an excess of oxidizing agent in the form of BaO_{2} was used to insure the stabilization of the high oxidation state of rhodium. The results of these experiments yielded large single crystals $(0.4 \times 0.4 \times 0.1 \mathrm{~mm})$ of a black product in the form of chunks and hexagonal plates. This massive product was stable to dilute HCl and the excess BaO and BaO_{2} could be removed by this acid treatment.

Crystallographic Studies

The X-ray powder diffraction analysis of the product indicated a layer-type $A B \mathrm{O}_{3}$ phase suggesting that the major phase was possibly a $6 H$ polytype. Further crystallographic studies, however, indicated the presence of two (or more) polytypes in the product. Precession data taken on several single crystals showed the presence of a six-layer phase with rhombohedral and not hexagonal symmetry. For these reasons, we believe the major phase to be an $18 R$ product and not a 6 H polytype. A structure refinement on this phase is planned.

A large hexagonal plate was studied by the precession method and was found to possess hexagonal symmetry with a fourlayer stacking sequence. Cone axis data confirmed this suspicion ($c>9.41 \AA$). The space group was found to be $P 6_{3} / m m c$, $P 6_{3} m c$, or $P \overline{6} 2 c$ and the unit cell parameters from the precession data suggested $a=$ 5.766 and $c=9.645 \AA$.

An energy-dispersive analysis of the crystal utilizing a scanning electron microscope confirmed the presence of $\mathrm{Ba}(L \alpha$, $L \beta$, and $L \gamma$) and $\operatorname{Rh}(L \alpha$, and $L \beta)$.

Structure Determination

The space group was assumed to be $P 6_{3} / m m c$ (\#194) and the unit cell parameters were determined in a PICK-II leastsquares refinement program using 24 reflections within the angular range $45<2 \theta$ $<53^{\circ}$; the reflections were automatically centered on a Picker FACS-I four-circle diffractometer using Mo $K \alpha$, radiation ($\lambda=$ $0.70930 \AA$). The unit cell parameters were found to be $a=5.744$ (1) and $c=9.642$ (1) \AA, where the figures in parentheses represent the standard deviations in the last reported figure. The calculated volume is $275.54 \AA$, giving a calculated density, with $Z=4$, of $6.95 \mathrm{~g} \mathrm{~cm}^{-3}$.
No attempt was made to grind the hexagonal plate into a sphere since all previous experiments on crystals of this shape yielded only circular disks. The hexagonal plate $(0.22 \times 0.29 \times 0.09 \mathrm{~mm})$ (volume $=$ $4.97 \times 10^{-6} \mathrm{~cm}^{3}$) was used for data collection. Precise dimensions of the crystal were determined with a microscope utilizing high magnification. These data were used in an absorption correction program written by N. W. Alcock and B. Lee for a crystal of general shape.

Diffraction intensities were measured using Zr -filtered $\mathrm{Mo} K \alpha$ radiation at a takeoff angle of 1.5° with the diffractometer operating in the ω scan mode. Ten-second background counts were taken at both ends of a $1.4^{\circ} \theta-2 \theta$ offset corrected for dispersion. Of the 707 data coilected in the angular range $2 \theta<54^{\circ}, 224$ were considered observable according to the criterion $\left|F_{0}\right|>3.0 \sigma_{\mathrm{F}}$, where σ_{F} is defined as $0.02\left|F_{0}\right|+\left[C+k^{2}\right.$ $B]^{1 / 2} / 2\left|F_{0}\right| L_{\mathrm{p}}$; the total scan count is C, k is the ratio of scanning time to the total background time, and B is the total background count. Three reflections were systematically monitored as standards during the experiment; the maximum variation in intensity observed was never greater than $\pm 3 \%$ over the data collection period.

Intensity data were corrected for Lorentzian and polarization effects, and absorption corrections were carried out using the computer program already cited. The corrected data were then averaged using a program written by L. Fingers and using the hexagonal transformation for determining equivalent reflections. This generated 132 independent reflections.

Structure Refinement

The study of the precession photographs indicated a four layer stacking sequence of BaO_{3} layers with Rh located in octahedral interstices. Since this system was previously observed for the (high-temperature form) BaMnO_{3} (1) and BaCrO_{3} (2) systems, it was decided to attempt the structure refinement based on this particular polytype of $\mathrm{Ba} M \mathrm{O}_{3}$ composition. The most probable space group for these hexagonal polytypes is taken as $P 6_{3} / m m c$.

A full-matrix refinement (3) using the positional parameter for five atoms, a $1 / \sigma^{2}$ weighting scheme, zero-valent scattering factors for Ba, Rh, and O (4), isotropic temperature factors, and corrections for secondary extinction and anomalous dispersion yielded a residual $R=0.11$ and a weighted residual $R_{\mathrm{w}}=0.22$. The final anisotropic refinement, based on a data:parameter ratio of 8.7 with the 15 independently varied parameters, yielded R
$=0.044$ and $R_{\mathrm{w}}=0.071$ for the observed data.
Table I presents the positional and anisotropic temperature parameters from the final anisotropic refinement. Except for two ripples at the periphery of the $\mathrm{Ba}(1)$ atoms, the difference Fourier map was essentially flat and equivalent to 0.2 of an oxygen atom or less.
An illustration of the structure is given in Fig. 1. The figure was prepared using ORTEP (5). Bond lengths and angles calculated in the ORFFEE program are given in Table II. The table of observed and calculated structure factors comprises Table III.

Results and Discussions

There exists only a few binary and ternary oxides of rhodium (IV). Most of these phases have been formed and crystallized under high-pressure conditions. The amorphous binary oxide, RhO_{2}, is crystallized with the rutile structure at 3000 atm and at higher pressures (6).
More recently ternary oxides of Rh (IV) have been reported to crystallize with the pyrochlore-type structure. These publications include the derivatives $\mathrm{Tl}_{2} \mathrm{Rh}_{2} \mathrm{O}_{7}(7)$, $\mathrm{Bi}_{2} \mathrm{Rh}_{2} \mathrm{O}_{7}(8), \mathrm{Sc}_{2} \mathrm{Rh}_{2} \mathrm{O}_{7}$, and $\mathrm{Sm}_{2} \mathrm{Rh}_{2} \mathrm{O}_{7}$ (9).

No structural determination has ever been carried out on any of these rhodium

TABLE I
Atomic Parameters for $\mathrm{BaRhO}_{3}(4 H)$

Atom	Position	x	y	z	$B_{11}{ }^{a}$	$B_{22}{ }^{a}$	$B_{33}{ }^{a}$	$B_{12}{ }^{a}$
$\mathrm{Ba}(1)$	$2 a$	0	0	0	$0.73(8)$	0.70	$0.56(2)$	0.35
$\mathrm{Ba}(2)$	$2 c$	$\frac{1}{3}$	$\frac{2}{2}$	$\frac{1}{4}$	$0.54(7)$	0.52	$0.16(2)$	0.26
$\mathrm{Rh}(1)$	$4 f$	$\frac{1}{3}$	$\frac{2}{3}$	$0.6137(1)$	$0.36(7)$	0.31	$0.08(2)$	0.16
$\mathrm{O}(1)$	$6 g$	$\frac{1}{2}$	0	0	$2.25(40)$	$1.11(40)$	$0.65(14)$	0.88
$\mathrm{O}(2)$	$6 h$	-0.1799	$-0.3598(16)$	$\frac{1}{4}$	$0.15(26)$	$-0.34(30)$	$0.45(11)$	0.07

[^0]TABLE II
Bond Lengths and Angles in $\mathrm{BaRhO}_{3}(4 \mathrm{H})$

Distance (\AA)						Angle (${ }^{\circ}$)		
$\mathrm{Ba}(1)-\mathrm{O}(1)$	6@	2.872(1)	$\mathrm{O}(1)-\mathrm{O}(1)$	4@	2.872(1)	$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}(1)$	3@	92.51(8)
$\mathrm{Ba}(1)-\mathrm{O}(2)$	6@	3.002(5)	$\mathrm{O}(1)-\mathrm{O}(2)$	4@	2.891(3)	$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}(2)$	3@	172.77(13)
			$\mathrm{O}(1)-\mathrm{O}(2)$	2@	2.926(1)	$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}(2)$	6@	92.49(5)
						$\mathrm{O}(1)-\mathrm{Rh}-\mathrm{O}(2)$	3@	82.05(23)
$\mathrm{Ba}(2)-\mathrm{O}(1)$	6@	2.926(1)	$\mathrm{O}(2)-\mathrm{O}(2)$	2@	2.644(14)			
$\mathrm{Ba}(2)-\mathrm{O}(2)$	6@	2.875(5)	$\mathrm{O}(2)-\mathrm{O}(1)$	2@	2.875(5)			
			$\mathrm{O}(2)-\mathrm{O}(1)$	2@	2.891(3)			
			$\mathrm{O}(2)-\mathrm{O}(2)$	2@	3.100(14)			
$\mathrm{Rh}(1)-\mathrm{O}(1)$	3@	1.988(1)				Rh-O(2)-Rh		81.43(31)
Rh(1)-O(2)	3@	2.014(6)				Rh-O(1)-Rh		180.0
Rh-Rh		2.628(3)						
Rh-O(1)-Rh		3.976(2)						

(IV) phases but recently a mixed rhodium (III)/rhodium (IV) compound has been prepared and its structure was determined (10). The ionic formulation of the derivative is given as $\mathrm{Pb}_{3}^{2+} \mathrm{Rh}_{3}^{4+} \mathrm{Rh}_{4}^{3+} \mathrm{O}_{15}^{2-}$. Previously, the preparation of $\mathrm{Pb}_{2} \mathrm{Rh}_{2} \mathrm{O}_{7}$ was shown to contain trivalent rhodium and tetravalent lead atoms (11). Table IV lists the $\mathrm{Rh}-\mathrm{O}$ distances for many of the trivalent and tetravalent derivatives.

Fig. 1. The projection of the hexagonal (110) plane for $\mathrm{BaRhO}_{3}(4 H)$.

The calculated values for ${ }^{\mathrm{VI}} \mathrm{Rh}^{3+}-\mathrm{O}$ and ${ }^{{ }^{\mathrm{V}}} \mathrm{Rh}^{4+}-\mathrm{O}$ distances are 2.05 and $2.00 \AA$, respectively (12). The observed ${ }^{v 1} \mathrm{Rh}-\mathrm{O}$ distance in BaRhO_{3} is $2.001 \AA$ which is consistent with the tetravalent state for rhodium as expected.
The packing sequence for the four-layer structure is $A B A C$, where A layers have metal atoms at $00 z, B$ layers at $\frac{2}{3} \frac{1}{3} z^{\prime}$, and C layers at $\frac{1}{3} \frac{2}{3} z^{\prime \prime}$. The Zhdanov notation for this packing sequence is $2(2)$, space group $\mathrm{P}_{3} / \mathrm{mmc}$. This particular structure type has been reported for BaMnO_{3} (high-temperature phase) (I), BaCrO_{3} (2), h.p. Ba $\mathrm{RuO}_{3}(15), \mathrm{SrMnO}_{3}(16,17)$, and $\mathrm{BaIrO}{ }_{3}$ (18). The reported structure refinement on this BaRhO_{3} phase is the first single-crystal determination utilizing a four-circle diffractometer.
The high pressure used in the preparation is considered to be most essential in stabilizing the high oxidation state of rhodium and in the formation of single crystals. Previous experiments at lower pressures of oxygen indicate the formation of a $4 H$ derivative, but one possessing a much larger unit cell, indicative of a Rh (III) product of possible nonstoichiometric composition BaRhO_{3-x}.
The observation that another polytype is
TABLE III
Observed and Calculated Structure Factors for $\mathrm{BaRhO}_{3}(4 H)$

h	k	1	FOBS	FCAL	h	k	1	FOBS	FCAL	h	k	l	FOBS	FCAL	h	k	l	FOBS	FCAL	h	k	1	FOBS	FCAL
0	0	2	183	208	-2	2	3	1826	1806	-3	1	11	916	890	-4	4	9	321	324	-6	1	2	553	523
0	0	4	1024	937	-2	2	4	924	969	-4	1	0	250	248	-5	0	0	101	92	-6	I	3	883 480	8870
0	0	6	562	567	-2	2	5	1088	1146	-4	,	1	80	68	-5	0	1	68	25	-6	1	4	480	485
0	0	8	2312	2042	-2	2	6	1222	1287	-4	1	2	319	784	-5	0	2	579	540	-6	1	5	586	580
0	0	10	332	335	-2	2	8	174	177	-4	1	3	1181	1166	-5	0	3	981	952	-6	2	0	135	132
0	0	12	319	269	-2	2	9	413	401	-4	1	4	613	638	-5	0	4	577	594	-6	2	1	131	89
-1	0	0	453	417	-2	2	10	396	379	-4	1	5	735	754	-5	0	5	632	632	-6	2	2	735	756
-1	0	2	1161	1135	-2	2	11	1068	991	-4	1	6	803	835	-5	0	6	616	620	-6	2	3	994	1007
-1	0	3	1643	1670	-3	0		2604	2396	-4	1	7	237	249	-5	0	7	188	202	-6	2	4	514	527
-1	0	4	833	910	-3	0	2	159	153	-4	1	8	213	210	-5	1	0	1898	1818	-6	2	5	680	
-1	0	5	905	994	-3	0	3	45	68	-4	1	9	249	256	-5	1	2	92	93	6	2	6	739	768
-1	0	6	1033	1086	-3	0	4	174	161	-4	1	10	217	221	-5	1	3	47	44	-6	3	0	1649	1640
-1	0	7	325	331	-3	0	5	91	53	-4	2	0	2729	2711	-5	1	4	149	138	-6	3	2	58	59
-1	0	8	255	248	-3	0	6	409	433	-4	2	2	108	93	-5	1	5	76	37	-6	3	4	118	125
-1	0	9	319	311	-3	0	8	1384	1459	-4	2	4	517	538	-5	1	6	365	366	-6	3	6	348	354
-1	0	10	277	280	-3	0	10	315	315	-4	2	6	426	448	-5		8	1157	1207	-6	6	0	1623	1632
-1	0	11	1031	959	${ }^{-3}$	1	0	213	216	-4	2	8	1597	1592	-5	2	0	251	243	-6	6	2	53	
-1	0	12	255	233	-3	1	1	66	71	-4	2	10	267	274	-5	2	1	87	94	-6	6	4	233	270
-2	1	0	3076	2990	${ }^{-3}$	1	2	854	841	-4	4	0	102	124	-5	2	2	747	736	-7	2	0	1380	1339
-2	1	2	175	171	-3	1	3	1407	1385	-4	4	1	181	137	-5	2	3	978	994	-7	2	2	84	
-2	1	4	178	161	-3	1	4	763	806	-4	4	2	1016	998	-5	2	4	526	542	-7	3	0	111	98
-2	1	6	477	508	-3	1	5	812	876	-4	4	3	1288	1266	-5	2	5	648	644	-7		1	49	
-2	1	8	1616	1633	-3	1	6	858	901	-4	4	4	667	678	-5	2	6	756	779	-7	3	2	464	437
-2	1	10	344	337	${ }^{-3}$	1	7	242	264	-4			836	853	-5	2	7	269	256	-7	3	3	800	800
-2	2	0	86	110	-3	1	8	224	194	-4	4	6	913	958	-5		8	212	212					
-2	2	1	319	248	-3	1	9	271	293	-4	4		166	131	-6	1	0	156	154					
-2	2	2	1629	1554	-3	1	10	231	228	-4	4	8	168	165	-6	1	1	52	53					

TABLE IV
Rhodium-Oxygen Distances (\AA) for Several Derivatives

Compound	$\mathrm{Rh}(\mathrm{III})-\mathrm{O}$	$\mathrm{Rh}(\mathrm{IV})-\mathrm{O}$	Reference
$\alpha-\mathrm{Rh}_{2} \mathrm{O}_{3}$	2.05	-	13
$\mathrm{Rh}_{2} \mathrm{O}_{3}(\mathrm{II})$	2.05	-	14
RhO_{2}	-	2.02	6
$\mathrm{~Pb}_{2} \mathrm{Rh}_{2} \mathrm{O}_{7}$	2.02 (for $x=0.343$)	-	$1 /$
$\mathrm{Pb}_{3} \mathrm{Rh}_{7} \mathrm{O}_{5}$	2.05 (two sites)	2.00	10
BaRhO_{3}	-	2.001	This work

also formed in the high-pressure/hightemperature reaction is of significance. The precession photographs show a six-layer stacking sequence but the overall symmetry is rhombohedral which means that the true packing sequence must be at least 18 layers. The structure determination on 4 H BaRhO_{3} would suggest that face sharing of octahedral RhO_{6} plays an important part in the stabilization of the structure. This information will be useful in developing suitable structural models for the 18 -layer rhombohedral polytype.

Acknowledgments

We wish to acknowledge the financial support from the UConn Research Foundation and NSF INT7717719. Computations were carried out at the University of Connecticut Computer Center.

References

1. A. Hardy, Acta Crystallogr. 15, 179 (1962).
2. B. L. Chamberland, Inorg. Chem. 8, 286 (1969).
3. W. R. Busing, K. O. Martin, and H. A. Levy, ORNL-TM-305 (1962).
4. "International Tables for X-ray Crystallography," Vol. IV, p. 99. Kynoch Press, Birmingham (1974).
5. C. K. Johnson, "ORTEP," ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn. (1965).
6. R. D. Shannon, Solid State Commun. 6, 139 (1968).
7. A. W. Sleight and J. L. Gillson, Mater. Res. Bull. 6, 781 (1971).
8. R. J. Bouchard and J. L. Gillson, Mater. Res. Bull. 6, 669 (1971).
9. V. B. Lazarev and I. S. Shaplygin, Mater. Res. Bull. 13, 229 (1978).
10. J. Omaly, R. Kohlmuller, P. Batail, and R. Chevalier, Acta Crystallogr. Sect B 36, 1040 (1980).
II. A. W. Sleight, Mater. Res. Bull. 6, 775 (1971).

I2. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).
13. J. M. D. Crey, Acta Crystallogr. Sect. B 26, 1876 (1970).
14. R. D. Shannon and C. T. Prewitt, J. Solid State Chem. 2, 134 (1970).
15. J. M. Longo and J. A. Kafalas, Mater. Res. Bull. 3, 687 (1968).
16. T. Negas and R. S. Roth, J. Solid State Chem. 1, 409 (1970).
17. B. L. Chamberland, A. W. Sleight, and J. F. Weiher, J. Solid State Chem. 1, 506 (1970).
18. B. L. Chamberland and S. Silverman, J. Less-Common Metals 65, 41 (1979).

[^0]: ${ }^{a}$ Thermal parameters are multiplied by 100 . The B 's are defined by the general temperature factor exp $\left.\left[-\frac{1}{4} B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{39} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right]$. For Ba and Rh atoms, B_{22} and B_{12} were not refined since $B_{11}=B_{22}$, and $B_{12}=\frac{1}{2} B_{11}$. For oxygen, the x parameter was not refined siace $x=\frac{1}{2} y$; and $B_{12}=\frac{1}{2} B_{22}$.

